Performance of an open-source heart sound segmentation algorithm on eight independent databases.

نویسندگان

  • Chengyu Liu
  • David Springer
  • Gari D Clifford
چکیده

OBJECTIVE Heart sound segmentation is a prerequisite step for the automatic analysis of heart sound signals, facilitating the subsequent identification and classification of pathological events. Recently, hidden Markov model-based algorithms have received increased interest due to their robustness in processing noisy recordings. In this study we aim to evaluate the performance of the recently published logistic regression based hidden semi-Markov model (HSMM) heart sound segmentation method, by using a wider variety of independently acquired data of varying quality. APPROACH Firstly, we constructed a systematic evaluation scheme based on a new collection of heart sound databases, which we assembled for the PhysioNet/CinC Challenge 2016. This collection includes a total of more than 120 000 s of heart sounds recorded from 1297 subjects (including both healthy subjects and cardiovascular patients) and comprises eight independent heart sound databases sourced from multiple independent research groups around the world. Then, the HSMM-based segmentation method was evaluated using the assembled eight databases. The common evaluation metrics of sensitivity, specificity, accuracy, as well as the [Formula: see text] measure were used. In addition, the effect of varying the tolerance window for determining a correct segmentation was evaluated. MAIN RESULTS The results confirm the high accuracy of the HSMM-based algorithm on a separate test dataset comprised of 102 306 heart sounds. An average [Formula: see text] score of 98.5% for segmenting S1 and systole intervals and 97.2% for segmenting S2 and diastole intervals were observed. The [Formula: see text] score was shown to increases with an increases in the tolerance window size, as expected. SIGNIFICANCE The high segmentation accuracy of the HSMM-based algorithm on a large database confirmed the algorithm's effectiveness. The described evaluation framework, combined with the largest collection of open access heart sound data, provides essential resources for evaluators who need to test their algorithms with realistic data and share reproducible results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An open access database for the evaluation of heart sound algorithms.

In the past few decades, analysis of heart sound signals (i.e. the phonocardiogram or PCG), especially for automated heart sound segmentation and classification, has been widely studied and has been reported to have the potential value to detect pathology accurately in clinical applications. However, comparative analyses of algorithms in the literature have been hindered by the lack of high-qua...

متن کامل

Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System

Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...

متن کامل

Automatic classification of normal and abnormal cardiac sounds by combining features based on wavelet transform and capstral coefficients extracted from PCG signals (Research Article)

Cardiac sounds are produced by the mechanical activities of the heart and provide useful information about the function of the heart valves. Due to the transient and unstable nature of the heart's sound and the limitation of the human hearing system, it is difficult to categorize heart sound signals based on what is heard from a stethoscope. Therefore, providing an automated algorithm for prima...

متن کامل

Segmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network

Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...

متن کامل

Segmentation of the Left Atrial Appendage in the Echocardiographic Images of the Heart Using a Deep Neural Network

Introduction: Cardiovascular diseases are one of the leading causes of mortality in today’s industrial world. Occlusion of left atrial appendage (LAA) using the manufactured devices is a growing trend. The objective of this study was to develop a computer-aided diagnosis system for the identification of LAA in echocardiographic images. Method: The data used in this descriptive analytical study ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physiological measurement

دوره 38 8  شماره 

صفحات  -

تاریخ انتشار 2017